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The stereoselective synthesis of 4-bromo-spiro-isoxazolines was achieved in one step through the bro-
mination of various isoxazoles that contain a pendant alcohol or carboxylic acid functional group. Isox-
azole bromination leads to a bromonium ion intermediate, which opens either by neighboring oxygen
lone pair electrons or by intramolecular nucleophilic attack. Single X-ray crystal data provide evidence
that the two contiguous stereocenters of the spiro-isoxazoline are formed by the anti intramolecular
attack of the nucleophile relative to bromine, since there is an anti stereochemical relationship between
the spirocyclic ring oxygen and the bromine atom.

Published by Elsevier Ltd.
Spiro-isoxazolines are found in a number of natural products,1

and due to their biological activity,1a,c–f,2 many compounds within
the psammaplysin and ceratinamide families have the potential to
serve as a structural template that could lead to synthetic analogues
that target a variety of diseases. The spiro-isoxazoline ring core is
the central structural feature within the aforementioned natural
products, and only a few publications address the synthesis of this
unique ring system.3,4 In the psammaplysin natural products, the
oxepine oxygen and the 4-hydroxy group on the isoxazoline are anti
to each other. A synthetic methodology that provides a stereoselec-
tive construction of spiro-isoxazolines that mimic the stereochem-
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ure 1. Psammaplysin and ceratina
ical features of the psammaplysin natural product is warranted.
Herein, we report the application of an oxonium-mediated stereo-
selective intramolecular cyclization of a brominated isoxazole
intermediate by a pendant alkoxide or carboxylate ion (Fig. 1).

Since the spiro-isoxazoline of the psammaplysin family of nat-
ural products contains an isoxazoline ring that has a substituent
on the 4-position, the exploration of the possibility of reacting an
isoxazole possessing a pendant nucleophilic functional group with
an electrophile was performed in order to determine if an intramo-
lecular cyclization would take place.5 Our retrosynthetic rationale
is depicted in Scheme 1.
R1 = R2 = H Psammaplysin A
R1 = OH, R2= H Psammaplysin B
R1 = OH, R2 = CH3 Psammaplysin C
R1 = H, R2 = CO(CH2)11CH(CH3)2 Psammaplysin D

R1 = H, R2 =

O

O

Psammaplysin E

R1 = H, R2 = CH3 Psammaplysin F
R1 = H, R2 = CHO Ceratinamide A
R1 = H, R2 = CO(CH2)11CH(CH3)2 Ceratinamide B

mide family of natural products.
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Scheme 1. Retrosynthetic analysis of 4-bromo-substituted spiro-isoxazolines.
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Scheme 2. Synthesis of furan and pyran-based spiro-isoxazolines.
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Scheme 3. Synthesis of lactone containing spiro-isoxazolines.

Figure 2. Thermal ellipsoid plot of the structure of 11.
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In order to test our hypothesis, alkyne 1 was reacted with the
nitrile oxide that was generated in situ from the base-promoted
reaction of a-chlorobenzaldoxime with triethyl amine to afford
isoxazole6 (3) regioselectively.7 Spiro-isoxazolines 5 and 6 were
effectively formed as single diastereomers upon the respective
treatment of 3 and 4 with pyridinium tribromide (Scheme 2).

Extension of this methodology to the synthesis of spiro-isoxaz-
olines with an inherent lactone ring system commenced from the
1,3-dipolar cycloaddition of 7 with the nitrile oxide from a-chloro-
benzaldoxime to afford 9.4,8 Pyridinium tribromide-promoted spi-
rolactonization of 9 stereoselectively afforded 11 as shown in
Scheme 3.9 Spiro-isoxazoline (12) was also obtained in an analo-
gous manner. Compound 12 was also assembled as a single isomer
based upon the NMR of the unpurified material. Fortunately, com-
pound 11 was a crystalline solid, and X-ray crystallographic analy-
sis of 11 showed that the bromine and the lactone oxygen are anti
to each other10 (Fig. 2). Based upon this stereochemical evidence, a
mechanism describing the formation of 11 is proposed in Scheme
4.

In our proposed mechanism, bromination of carboxylate ion
(13) affords the bromonium ion intermediate (14). If intermediate
14 follows pathway A, oxonium ion intermediate (15) is formed.
Intramolecular cyclization of 15 by the carboxylate ion gives rise
to 11. Likewise, 14 can potentially follow route B where the bromo-
nium ion is directly attacked in an intramolecular fashion by the
carboxylate ion. In both pathways, the large bromine atom likely
controls the direction of nucleophilic attack to form the corre-
sponding spiro-isoxazoline, where the bromine and spirocyclic lac-
tone oxygen atom have an anti relationship.
In summary, this investigation shows the application of an oxo-
nium ion-mediated synthesis of 4-bromo-spiro-isoxazolines,
where two contiguous stereocenters are formed stereoselectively
through the bromination and intramolecular cyclization of isoxaz-
oles possessing a pendant alcohol or carboxylic acid. Future inves-
tigations involving the enantioselective synthesis of spiro-
isoxazolines with substituents other than bromine on the 4-posi-
tion, and a mechanistic theoretical study of the intramolecular
cyclization are currently underway.
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Scheme 4. Proposed mechanism for the stereoselective formation of compound 11.
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